Study of spin fluctuations in La_{1.94-x}Sr_xCe_{0.06}CuO₄

M. Fujita¹, M. Enoki², and K. Yamada³

Institute for Materials Research, Tohoku University, Katahira, Sendai 980-8577, Japan
Department of Physics, Tohoku University, Aramaki, Sendai 980-8578, Japan
World-Premier-International Research Center Initiative,
Tohoku University, Katahira, Sendai 980-8577, Japan

It is widely believed that spin correlations play an important role in the mechanism of high-T_c superconductivity[1]. Since, the static spin order competes with the superconductivity and such order is stabilized in the system with corrugated CuO₂ planes[2], a study of spin fluctuations in the system with flat CuO₂ plane, where the ideal superconducting state is considered to be realized, is more important. In order to shed light on this issue, we have carried out neutron-scattering experiments to investigate the effect of distortion of CuO₂ planes on the low-energy spin correlation of La_{1.94-x}Sr_xCe_{0.06}CuO₄ with x=0.14, 0.18 and 0.24, of which orthorhombic lattice distortion is smaller than that in $La_{2-x'}Sr_{x'}CuO_4$ (LSCO) with comparable hole concentration.

As shown in Fig. 1, clear gap structure was observed in the energy spectrum of local dynamical susceptibility $\chi''(\omega)$ for both $x=0.18 \ (p\sim0.14)$ and $x=0.24 \ (p\sim0.20)$ samples, similar to the results for optimallydoped LSCO[3]. On the other hand, in the x=0.14 (p \sim 0.10) sample, a low energy component showing the increases of intensity below $2\sim3$ meV with lowering ω was observed within the gap-like structure. Such a $\chi''(\omega)$ in x=0.14 is quite different from that for LSCO with x'=0.10, although the effective hole concentration in two samples is comparable[3]. These experimental results suggest that the gap-strucure is robust against the lattice distortion, while the loweneryg component is strongly influenced by the lattice distortion. We speculate that such reduction of the low-energy component is caused by the relaxation of corrugation of CuO₂ planes. In other words, the slowing down of spin fluctuations occurs in the system with corrugated CuO_2 planes. Moreover, the appearance of gap-like structure in $\chi''(\omega)$ by reducing the lattice distortion would be the evidence for the existence of spin-gap states in the underdoped La214 system. Further systematic neutron-scattering experiments are required to clarify the intrinsic spin correlations in the high- T_c superconductors.

References

- [1] M. A. Kastner *et al.*: Rev. Mod. Phys. **70**, (1998)897.
- [2] M. Fujita *et al.*: Phys. Rev. Lett. **88** (2002)167008.
- [3] C.H. Lee *et al.*: J. Phys. Soc. Jpn. **69** (2000)1170.

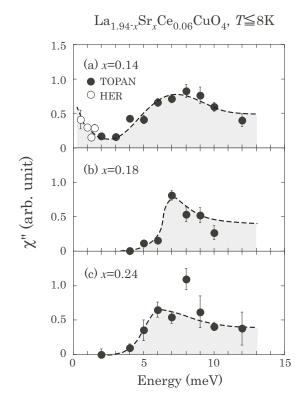


Fig. 1. Local spin susceptibility for $La_{1.94-x}Sr_xCe_{0.06}CuO_4$ with (a) x=0.14, (b) 0.18 and (b) 0.24 measured below 8 K.